

Solve by graphing

$$\begin{cases} y - x = 6 & \frac{x+y}{0-6} \\ y + 2x = -6 & y = 1 \\ \frac{x+y}{0-6} & y = 1 \\ \frac{x+y}{0-6} & y = 1 \\ \frac{x+y}{0-6} & y = 1 \\ (-y,z) & y = 1 \\ (-y,z) & y = 1 \\ y = 1 \\ (-y,z) & y = 1 \\ y$$

September 21, 2017

Solve by Substitution method:

$$3x - 2y = -14$$
 PIsolate one Variable
 $x + 3y = -1$ $x = -1 - 3y$
Now make the Subs
 $3(-1 - 3y) - 2y = -14$
 $-3 - 9y - 2y = -14$
 $-3 - 11y = -14$
 $-11y = -14 + 3$
 $-11y = -14 + 3$
 $-11y = -11$
 $y = 1$

Solve by addition/Elimination method:

$$3\begin{cases} 3x + 5y = 2 & LCM(5,3) = 15 \\ 5 & 2x & -3y = 14 & Let's eliminate x \\ 7x & +15y = 6 & 2 & 3x + 5y = 2 \\ 7x & -15y = 70 & -3 & 2x - 3y = 14 \\ 7x & = 76 & LCM(2,3) = 6 \\ 7x & = 76 & 6x + 10y = 4 \\ 7x = 76 & 6x + 10y = 4 \\ 7x = 76 & 6x + 10y = 4 \\ 7x = 76 & 7x = 4 \\ 7y = -32 & 7y = 4$$

The Sum of two numbers is 10. Their difference is 4. Use system of linear equation to find both numbers. $\begin{cases} x + y = 10 \\ x - y = 4 \end{cases}$ Numbers are 7+y=10 2=7 η έ3.

The Sum of funce some number and
3 times another number is 19.
Their difference is 2.
Use system of linear eques to find both
numbers.
$$\begin{cases} 2\chi + 3y = 19 \\ \chi = y = 2 \implies \chi = 2 \pm y \\ \chi = 2 \pm 3 \end{cases}$$

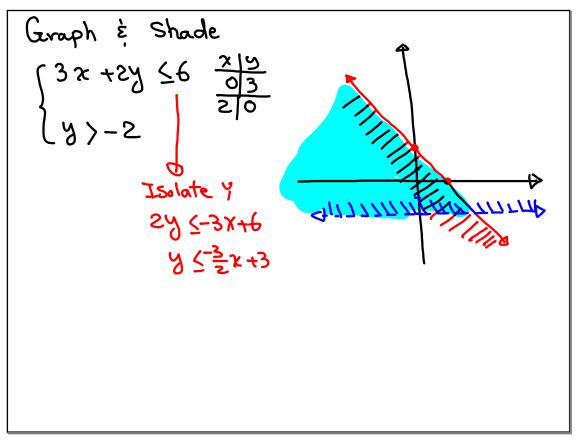
 $2(2+y) + 3y = 19$
 $4 + 2y + 3y = 19$
 $5y = 15$
 $y = 3$
Numbers are
 $5y = 15$
 $y = 3$

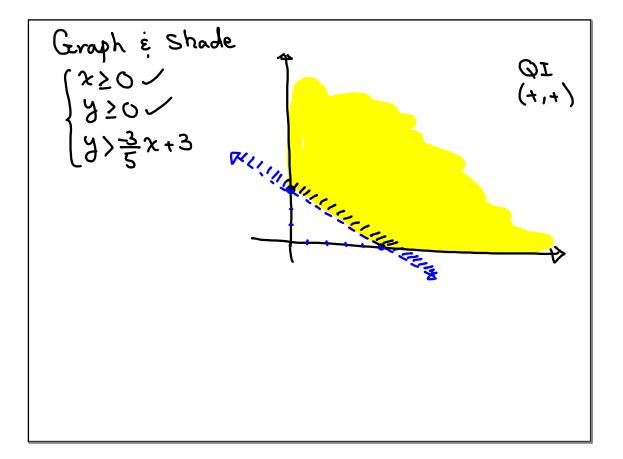
September 21, 2017

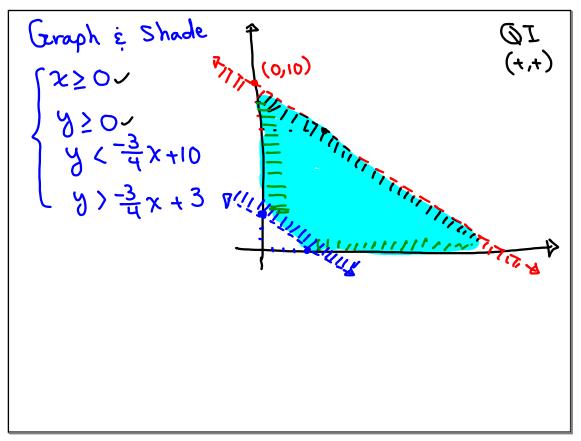
16 Tickets were purchased. 4 + K=16-2/K=12 Adults & Kids only. -5(A + K = 16 Adult's that -> \$10 (10A + 5K = 100 Kid's tkt ->\$5 [-5A -5K = -80 Total cost -> \$100 10A + 5K = 100How many of each? 5A -20 Z4 Adults & 12 kids) [A=4]

+ N=30 Jose has 30 coins. -5(D Dimes & Nickels only. 10D + 5N=510 Total Value \$2.10 $\int -5D - 5N = -150$ use system of linear 210D + 5N = 210 egns to find how many of each he had. 5D = 60(12 Dimes & 18 nickels 1D=121 12+11=30 N=18

September 21, 2017


the perimeter of a rectangular carpet is 44 St. The length is 1ft longer than twice its width. W use system of linear equs to find its (dimensions.) P=44 $\int 2L + 2W = 44$ 2(2W + 1) + 2W = 442 L = 2 W + 1 4 W + 2 + 2 W = 44L=2(7)+1=15 6W +2=44 6w=42 (W=7) ETH by 15 Ft)


Perimeter of a rectangular room is 68m. the length is 2 meters Shorter than 3 times its width. use system of linear S equations to find the P = 68length of this room. +252L +2W=68 25m.) {L= 3W-2 3w - 2 + w = 34 $\frac{1}{2}$ + w = 34 4W = 34+2L = 3W - 24W=36 ->W=9 - L=3(9)-2 = 25


find an eqn of a line that contains (2,-3) and is parallel to $y = \frac{3}{4}x - 1$. (2,-3) and is point. Answer in Standard form. Ax + By = C $y - y_1 = m(x-x)$ Ax + By = C $y - 3 = \frac{3}{4}(x-2)$ Multiply by 4 to clear fraction. $y - 3 = \frac{3}{4}(x-2)$ $y + 3 = \frac{3}{4}(x-2)$ 44 +12 = 3x -6 Point-Slop +44 =-18 => -3χ 3x -4y=18

find eqn of a line that contains

$$(5, -3)$$
 and is perpendicular to $3x + 4y = 8$.
 $(5, -3)$ and is perpendicular to $3x + 4y = 8$.
 $3y - 3 = \frac{4}{3}(x - 5)$
 $3y + 9 = 4(x - 5)$
 $3y - 1x = -29$
 $-1x + 3y = -29$
 $4x - 3y = 29$

Two angles are complementary. The sum of twice one of them and three times the other one is 245°. -2(x + y=90 use system of linear 2x +3y=245 equations to find them. 5-27 -24 = -180 27 +34 = 245 65° ¿ 25° ? y=65

Two angles are supplementary.
when
$$3 \text{ times one of them}$$
 is
subtracted 3^{500} the other one,
the result is -50° .
Use System of linear equins to find both angles.
 $3 \begin{cases} 2 + 3 \\ 4\chi - 3y = -50 \end{cases}$.
 $3 \begin{cases} 3\chi + 3y = 540 \\ 70 \stackrel{\circ}{\approx} 110 \\ 100 \\ 100 \end{cases}$.
Added to
Subtract from
more than
less than
 $100 \\ 100 \\$

$$\begin{array}{c} \$2.50/\text{Rb.} \\ \hline \$0 \\ \hline & & \\$$