Math 115 Fall 2017 Lecture 14

Solve by graphing

$$
\left\{\begin{array}{l}
y-x=6 \\
y+2 x=-6
\end{array}\right.
$$

$$
\begin{array}{l|l}
x & y \\
\hline 0 & -6 \\
\hline-3 \mid 0
\end{array}
$$

check

$$
\begin{gathered}
2-(-4)=6 \\
2+4=6 \\
6=6
\end{gathered}
$$

$$
\begin{aligned}
2+2(-4) & =-6 \\
2-8 & =-6 \\
-6 & =-6 v
\end{aligned}
$$

Soln $(-4,2)$

Solve by Substitution method:

$$
\begin{aligned}
& \{3 x-2 y=-14 \quad \rightarrow \text { Isolate one variable } \\
& x=-1-3 y \\
& \text { Now make the Subs } \\
& 3(-1-3 y)-2 y=-14 \\
& -3-9 y-2 y=-14 \\
& -3-11 y=-14 \\
& -11 y=-14+3 \\
& -11 y=-11 \\
& y=1
\end{aligned}
$$

Solve by addition/Elimination method:

$$
\begin{aligned}
& 3\left\{\begin{array}{l}
3 x+5 y=2 \\
2 x-3 y=14
\end{array}\right. \\
& \operatorname{LCM}(5,3)=15 \\
& \text { Let's eliminate } x \\
& \left\{\begin{array}{l}
9 x+15 y=6 \\
10 x-15 y=70 \\
\hline 19 x-76
\end{array}\right. \\
& x=\frac{76}{19} \quad x=4 \\
& 2\left\{\begin{array}{l}
3 x+5 y=2 \\
2 x-3 y=14
\end{array}\right. \\
& -32 x-3 y=14 \\
& \operatorname{LCM}(2,3)=6 \\
& \left\{\begin{array}{l}
6 x+10 y=4 \\
-6 x+9 y=-42
\end{array}\right. \\
& y=-2
\end{aligned}
$$

The sum of two numbers is 10 . Their difference is 4 .
use system of linear equation to find both numbers. $\left\{\begin{array}{l}x+y=10 \\ x-y=4\end{array}\right.$

The Sum of twice Some number and 3 times another number is 19.
Their difference is 2 .
use system of linear equs to find both

$$
\begin{aligned}
& \text { numbers. }\left\{\begin{array}{c}
2 x+3 y=19 \\
x
\end{array}\right. \\
& \begin{array}{c}
2(2+y)+3 y=19 \\
4+2 y+3 y=19 \\
5 y=15 \\
y=3
\end{array}
\end{aligned}
$$

16 Tickets were purchased. $4+k=16 \rightarrow k=12$
Adults غ kids only.
Adult's tkt $\rightarrow \$ 10$$\quad\left\{\begin{array}{l}A+k=16 \\ 10 A+5 k=100\end{array}\right.$
Kid's $H K t \rightarrow \$ 5$
Total cost $\rightarrow \$ 100$$\quad\left\{\begin{array}{l}-5 A-5 K=-80 \\ 10 A+5 K=100\end{array}\right.$
How many of each?

$$
5 A=20
$$

$\{4$ Adults i. 12 kids

$$
A=4
$$ use system of linear

eqns to find how
many of each he had. $\quad 5 D=60$ 12 Dimes i. 18 nickels

$$
\left\{\begin{aligned}
-5 D-5 N & =-150 \\
10 D+5 N & =210 \\
5 D & =60 \\
D & =12 \\
12+N & =30 \\
N & =18
\end{aligned}\right.
$$

The perimeter of a rectangular carpet is 44 ft .
The length is 1 ft longer than twice its width.
Use system of linear equs
to find its dimensions.

$$
\begin{aligned}
& \text { Fo find its (dimensions.) } \quad P=44 \\
& \begin{cases}2 L+2 w=44 & 2(2 w+1)+2 w=44 \\
L=2 w+1 & 4 w+2+2 w=44\end{cases} \\
& L=2(7)+1=15 \quad 6 w+2=44 \\
& 2 \mathrm{ft} \text { by } 15 \mathrm{ft}
\end{aligned}
$$

Perimeter of a rectangular room is 68 m . the length is 2 meters shorter than 3 times its width. use system of linear
 equations to find the length of this room.

$$
P=68
$$

$$
\left.\begin{array}{c}
3 w-2+w=34 \\
4 w=34+2 \\
4 w=36 \rightarrow w=9
\end{array}\right\} \begin{aligned}
& 25 m \\
& L=3 w-2 \\
& L=3(9)-2=25
\end{aligned}
$$

find an eqn of a line that contains $(2,-3)$ and is parallel to $y=\frac{3}{4} x-1$.
Answer in standard form.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

"No fractions"
Multiply by 4 to clear fraction.

$$
y--3=\frac{3}{4}(x-2)
$$

$$
4 y+12=3(x-2)
$$

$$
y+3=\frac{3}{4}(x-2)
$$

$$
4 y+12=3 x-6
$$

Point-slope

$$
-3 x+4 y=-18 \Rightarrow 3 x-4 y=18
$$

find eau of a line that contains $(5,-3)$ and is perpendicular to $3 x+4 y=8$.

$$
\begin{aligned}
& \text { Isolate } y \text { of } A x+B y=C \\
& y-y_{1}=m^{0}\left(x-x_{1}\right) \\
& \begin{array}{c}
4 y=-3 x+8 \\
y=\frac{-3}{4} x+2
\end{array} \\
& \text { stand. form } \\
& \text { I need it } \\
& y--3=\frac{4}{3}(x-5) \\
& \text { to be in } \\
& \text { slope-Int } \\
& \text { form. } \\
& y+3=\frac{4}{3}(x-5) \\
& \left.\begin{array}{l}
3 y+9=4(x-5) \\
3 y+9=4 x-20
\end{array}\right] \\
& \rightarrow 3 y-4 x=-20-9 \\
& 3 y-4 x=-29 \text { Stand. } \\
& -4 x+3 y=-29 \quad 4 x-3 y=29
\end{aligned}
$$

Graph غ̇ Shade

$$
\left\{\begin{aligned}
& 3 x+2 y \leq 6 \frac{x \mid y}{0 \mid 3} \\
& y>-2 \frac{20}{2 \mid 0} \\
& \text { Isolate } y \\
& 2 y \leq-3 x+6 \\
& y \leq \leq \frac{-3}{2} x+3
\end{aligned}\right.
$$

Graph i shade

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
y>\frac{-3}{5} x+3
\end{array}\right.
$$

Two angles are complementary.
The Sum of twice one of them and three times the other one is 245°. use system of linear equations to find them.

$$
\begin{array}{r}
-2\left\{\begin{array}{l}
x+y=90 \\
2 x+3 y=245
\end{array}\right. \\
\left\{\begin{array}{l}
-2 x-2 y=-180 \\
2 x+3 y=245 \\
y=65
\end{array}\right.
\end{array}
$$

Two angles are supplementary. when 3 times one of them is subtracted $\sqrt[f r o m]{4}$ times the other one, the result is -50°.
Use system of linear equs to find both angles.

$$
\begin{aligned}
& 3\left\{\begin{array} { l }
{ x + y = 1 8 0 } \\
{ 4 x - 3 y = - 5 0 }
\end{array} \left\{\begin{array}{l}
30^{\circ} \dot{\varepsilon} 110^{\circ} \\
4 x+3 y=540 \\
4 x-3 y=-50
\end{array} \Rightarrow \begin{array}{l}
\text { Added to } \\
\text { Subtract from } \\
\text { more than } \\
\text { less than }
\end{array}\right.\right. \\
& \begin{array}{l}
\text { levin }
\end{array} \\
& \text { Reverse the order }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
A+B=100 \\
2.50 A+4.25 B=(2.85) 100
\end{array} \quad-2.5\left[\begin{array}{l}
A+B=100 \\
2.5 A+4.25 B=285
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
-2.5 A-2.5 B=-250 \\
2 / 5 A+4.25 B=285
\end{array}, \begin{array}{rl}
1.75 B=35 \\
B=\frac{35}{1.75} & B=20
\end{array}\right.
\end{aligned}
$$

Mr. Castro ordered 4 HB E 3 FF for a total of $\$ 7.65 . \quad 4 \mathrm{H}+3 F=7.65$
Mrs. Chang ordered $6 H B \quad \dot{\varepsilon}_{1} \subset F F$ for a total of $\$ 9.606 H+2 F=9.60$ find the price of one order of FF .

$$
\begin{array}{cc}
3\left\{\begin{array}{lc}
4 H+3 F=7.65 & \operatorname{LCM}(4,6)=12 \\
-2 H+2 F=9.60 \\
6 H & \left\{\begin{array}{l}
12 H+9 F=22.95 \\
-12 H-4 F=19.20
\end{array}\right. \\
F=.75 & \frac{\sigma F=3.75}{5.75}
\end{array}\right.
\end{array}
$$

Due Monday

1) Graphing Project
2) $S G 11$
3) Exam II, come early if you want extra time.

Say Hi_{i} to George (Jorge)

